C-2.9 Use the equation $E = mc^2$ to determine the amount of energy released during nuclear reactions.

This concept was not addressed in physical science

Revised Taxonomy Level 3.2 C_A Apply (use) procedural knowledge

Students did not cover this concept in physical science

It is essential for students to

- Calculate nuclear binding energies
 - \triangleright Calculate the change in potential energy that would occur if the nucleus were formed from its constituent protons and neutrons (for example ${}^{16}_{8}O$)
 - $> 8_0^1 n + 8_1^1 H \rightarrow {}^{16}_8 O$
 - ➤ Obtain the energy change by comparing the sum of the mass of eight protons and eight neutrons with that of the oxygen nucleus
 - ◆ The mass of the oxygen nucleus, protons and neutrons will need to be supplied to 5 decimal places
 - $8 (1.67493 \times 10^{-24} \text{g}) + 8 (1.67262 \times 10^{-24} \text{g}) = 2.67804 \times 10^{-23} \text{g}$ $8 (\text{mass of }_{0}^{1} n) + 8 (\text{mass of }_{1}^{1} H) = \text{total mass of protons \& neutrons}$
 - Mass of ${}^{16}_{8}O$ nucleus = 2.65535 x ${}^{10-23}$ g
 - $2.65535 \times 10^{-23} \text{g} 2.67804 \times 10^{-23} \text{g} = -2.269 \times 10^{-25} \text{g}$
 - The negative sign means the process is exothermic
 - ♦ The difference in energy is called the mass defect
- ❖ The mass defect is the amount of mass which is converted to energy in a nuclear reaction using the equation: $E = mc^2$, where
 - ♦ E = energy (in joules per atom)
 - ♦ m = mass defect (in kg)
 - c =the speed of light (3.00 x 10^8 m/s)

Assessment

The revised taxonomy verb for this indicator is <u>implement (use)</u>, the major focus of assessment will be for students to show that they can "apply a procedure to an unfamiliar task". The knowledge dimension of the indicator, procedural knowledge means "knowledge of subject-specific techniques and methods" In this case the procedure for producing an electric field drawing. A key part of the assessment will be for students to show that they can apply the knowledge to a new situation, not just repeat problems which are familiar. This requires that students have a conceptual understanding of electric charge and electric fields.